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Goal of this talk

• Give an overview of the HDF5 Library tuning knobs
for sequential and parallel performance
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Challenging task

• HDF5 Library has to perform well on
– Variety of UNIX Workstation (SGI, Intel,  HP, Sun)
– Windows
– Cray
– DOE supercomputers (IBM SP, Intel Tflops)
– Linux clusters (Compaq, Intel)

• Variety of file systems (GPFS, PVFS, Unix FS)
• Variety of MPI-IO implementations
• Other tasks

– Efficient memory and file space management
• Applications are different (access patterns, many

small objects vs. few large objects, parallel vs.
sequential, etc.)
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Outline

• Sequential performance
– Tuning knobs

• File level
• Data transfer level

– Memory management
– File space management: Fill values and storage allocation
– Chunking

• Compression
• Caching

– Compact storage
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Outline

• Parallel performance

– Tuning knobs
• Data alignment
• MPI-IO hints
• HDF5 Split Driver

– h5perf benchmark
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Sequential Performance

• Tuning knobs
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Two Sets of Tuning Knobs

• File level knobs
– Apply to the entire file

• Data transfer level knobs
– Apply to individual dataset read or write



8

File Level Knobs

• H5Pset_meta_block_size
• H5Pset_cache
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H5Pset_meta_block_size

• Sets the minimum metadata block size allocated
for metadata aggregation.

• Aggregated block is usually written in a single
write action

• Default is 2KB
• Pro:

– Larger block size reduces I/O requests

• Con:
– Could create “holes” in the file and make file bigger
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H5Pset_meta_block_size

• When to use:
• File is open for a long time and

– A lot of objects created
– A lot of operations on the objects performed
– As a result metadata is interleaved with raw data
– A lot of new metadata (attributes)
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H5Pset_cache

• Sets:
– The number of elements (objects) in the meta data

cache
– The number of elements, the total number of bytes, and

the preemption policy value (default is 0.75) in the raw
data chunk cache
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H5Pset_cache
(cont.)

• Preemption policy:
– Chunks are stored in the list with the most recently

accessed chunk at the end
– Least recently accessed chunks are at the beginning of

the list
– X*100% of the list is searched for the fully read/written

chunk; X is called preemption value, where X is between
0 and 1

– If chunk is found then it is deleted from cache, if not
then first chunk in the list is deleted
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H5Pset_cache
(cont.)

• The right values of X
– May improve I/O performance by controlling preemption

policy
– 0 value forces to delete the “oldest” chunk from cache
– 1 value forces to search all list for the chunk that will be

unlikely accessed
– Depends on application access pattern
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Data Transfer Level Knobs

• H5Pset_buffer
• H5Pset_sieve_buf_size
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H5Pset_buffer

• Sets size of the internal buffers used during data
transfer

• Default is 1 MB
• Pro:

– Bigger size improves performance

• Con:
– Library uses more memory
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H5Pset_buffer

• When should be used:
– Datatype conversion
– Data gathering-scattering (e.g. checker board dataspace

selection)
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H5Pset_sieve_buf_size

• Sets the size of the data sieve buffer
• Default is 64KB
• Sieve buffer is a buffer in memory that holds part

of the dataset raw data
• During I/0 operations data is replaced in the

buffer first, then one big I/0 request occurs



18

H5Pset_sieve_buf_size

• Pro:
– Bigger size reduces I/O requests issued for raw data

access

• Con:
– Library uses more memory

• When to use:
– Data scattering-gathering (e.g. checker board)
– Interleaved hyperslabs
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HDF5 Application Memory Management

• H5garbage_collect()
– Memory used by HDF5 application may grow with the

growing number of the objects created and then released
– Function walks through all the garbage collection

routines of the library, freeing any unused memory

– When to use:
– Application creates-opens-releases substantial

number of objects
– “Number of objects” is application and platform

dependent
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HDF5 File Space Management

• H5Pset_alloc_time
– Sets the time of data storage allocation for creating a

dataset
• Early when dataset is created
• Late when dataset is written

• H5Pset_fill_time
– Sets the time when fill values are written to a dataset

• When space allocated
• Never

– Avoids unnecessary writes
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Chunking and Compression

• Chunking storage
– Provides better partial access to dataset
– Space is allocated when data is written
– Con:

• Storage overhead
• May degrade performance if cache is not set up properly

• Compression (GZIP, SZIP in HDF5 1.5 release)
– Saves space
– User may easily turn on their own compression method
– Con:

• May take a lot of time
• Data shuffling (in HDF5 1.5 release)

– Helps compression algorithms
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Data shuffling

• See Kent Yang’s poster
• Not a compression; change of byte order in a

stream of data
• Example

– 1  23 43
• Hexadecimal form

– 0x01 0x17 0x2B
• Big-endian machine

– 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x17 0x00 0x00
0x00 0x2B

• Shuffling
– 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

0x17 0x2B
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00 00 00 01   00 00 00 17   00 00 00 2B

00 00 00 00 00 00 01 17 2B

00 00 00 01   00 00 00 17   00 00 00 2B

00 00 00
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Chunking and compression
benchmark

• Write one 4-byte integer dataset 256x256x1024
(256MB)

• Using chunks of 256x16x1024 (16MB)
• Random integers between 0 and 255
• Tests with

– Compression on/off
– Chunk cache size 16MB to 256MB
– Data shuffling
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Chunking Benchmark
Time Definitions

• Total
– Time to open file, write dataset, close dataset and close

file

• Write time
– Time to write the whole dataset

• Average chunk time
– Total time/ number of chunks
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Performance improvement

0.24474.57111.4.5-prerelease

0.48098.69501.4.4 release

Average time to
write a 16MB chunk
In seconds

Total time
(Open-write-close)
in seconds

Release version
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Effect of Caching (H5Pset_cache)

3.48674.66256MBYes

630.89672.5816MBYes
File size
102.9MB

3.635.79256MBNo

5.435.60716MBNo
File size
268.4MB

Write time in
seconds

Total time in
seconds

CacheCompression
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Effect of data shuffling
(H5Pset_shuffle + H5Pset_deflate)

78.26883.35367.34MB

629.45671.049102.9MB

Write TimeTotal timeFile size

Compression combined with shuffling provides
•Better compression ratio
•Better I/O performance



29

Effect of chunk caching and data shuffling

3.47682.972256MB

43.25782.942128MB

78.26883.35316MB

Write TimeTotal timeCache

H5Pset_cache + H5Pset_shuffle + H5Pset_deflate

•Caching improves chunk write time
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Compact storage

• Store small objects (e.g. 4KB dataset) in the file
– C code example:

plist = H5Pcreate(H5P_DATASET_CREATE);
H5Pset_layout(plist, H5D_COMPACT);
H5Pset_alloc_time(plist,H5D_ALLOC_TIME_EARLY);
dataset = H5Dcreate(file,…, plist);

– Raw data is stored in the dataset header
• Metadata and raw data are written/read in one I/0

operation
• Faster write and read
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Compact storage benchmark

• Create a file with N 4KB datasets using regular and
compact storage (100 < N < 35000)

• Measure average time needed to write/read a
dataset in a file with N datasets

• Benchmark run on Linux 2.2.18 i686, 960MB memory
• timeofday function used to measure time
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Writing a dataset
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Reading latest written dataset
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Parallel Performance

• Tuning knobs
• h5perf benchmark
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Parallel HDF + MPI

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application User Applications

HDF library

Parallel I/O layer

Parallel File systemsSP  GPFSO2K Unix I/O

MPI-IO

TFLOPS PFS

PHDF5 Implementation Layers
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File Level Knobs (Parallel)

• H5Pset_alignment
• H5Pset_fapl_split
• H5Pset_fapl_mpio
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H5Pset_alignment

• Sets two parameters
– Threshold

• Minimum size of object for alignment to take effect
• Default 1 byte

– Alignment
• Allocate object at the next multiple of alignment
• Default 1 byte

• Example: (threshold, alignment) = (1024, 4K)
– All objects of 1024 or more bytes starts at the boundary

of 4KB
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H5Pset_alignment
Benefits

• In general, the default (no alignment) is good for
single process serial access since the OS already
manages buffering.

• For some parallel file systems such as GPFS, an
alignment of the disk block size improves I/O
speeds.
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H5Pset_fapl_split

• HDF5 splits to two files
– Metadata file for metadata
– Raw data file for raw data (array data)

• Significant I/O improvement if
– metadata file is stored in Unix file systems (good for

many small I/O)
– raw data file is stored in Parallel file systems (good for

large I/O).
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I/O Hints via
H5Pset_fapl_mpio

• MPI-IO hints can be passed to the MPI-IO layer via
the Info parameter of H5Pset_fapl_mpio

• Examples
– Telling Romio to use 2-phase I/O speeds up collective

I/O in the ASCI Red machine at Livermore National
Laboratory

– Setting IBM_largeblock_io=true speeds up GPFS write
speeds
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2-Phase I/O

p0 p1 p2 p3 p4 p5

p0 p1

disk

- Interleaving
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2-Phase I/O

•  Aggregation (available in ROMIO 1.2.4); useful for
•  filling I/O buffers
•  moving data to processors that have better connectivity

p0 p1 p2 p3 p4 p5

disk

p0 p1
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Effects of I/O Hints
IBM_largeblock_io

• GPFS at Livermore National Laboratory ASCI Blue machine
– 4 nodes, 16 tasks
– Total data size 1024MB
– I/O buffer size 1MB

0
50

100
150
200
250
300
350
400

MPI-IO PHDF5 MPI-IO PHDF5

IBM_largeblock_io=false IBM_largeblock_io=true

16 write
16 read
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Parallel I/O
Benchmark Tool

• h5perf
– Benchmark test I/O performance
– Comes with HDF5 binaries
– Writes datasets into the file by hyperslabs
– Variables:

• Number of datasets
• Number of processes
• Number of bytes per process per dataset to

write/read
• Threshold for data alignment
• Size of transfer buffer (memory buffer) and block per

process
• Collective vs. Independent
• Interleaved blocks vs. contiguous blocks
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Parallel I/O
Benchmark Tool

• Four kinds of API
– Parallel HDF5
– MPI-IO
– Native parallel (e.g., gpfs, pvfs)
– POSIX (open, close, lseek, read, write)

• Provides standard approach to measure and
compare performance results
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Parallel I/O Tuning

• Challenging task
– Performance vary from platform to platform
– Complex access patterns
– Many layers can be involved

• SAF-HDF5-MPIO-GPFS
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Parallel I/O Tuning
Example of transfer buffer effect

• h5perf run on NERSC IBM SP
• 4 processes, 4 nodes, 1MB file, 1 dataset, 256KB

data per process to write
• Maximum achieved write speed in MB/sec
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Parallel I/O Tuning
Example of transfer buffer effect on SP2
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Parallel I/O Tuning
Example of transfer buffer effect on SP2

0
20
40
60
80

100
120
140
160
180

read open-read-
close

read open-read-
close

128 256

Transfer buffer size in KB

S
pe

ed
 in

 M
B

/s
ec

POSIX

MPI-IO

PHDF5



51

Parallel I/O Tuning
Example of transfer buffer effect on SGI
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Summery results for Blue

• h5perf run on ASCI IBM SP  Blue
• 1 to 4 processes per node, 16 nodes, 256KB data

per process to write/read, 256 KB transfer size,
256KB block size

• Varied:
– Number of tasks per node (1 – 4)
– Number of datasets 50, 100, 200
– Independent or collective calls
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HDF5 collective write results

52.66
2 TPN

25 – 4540 – 60200

66.24
3 TPN

50 – 6040 – 60100

68.47
3 TPN

50 – 6020 – 3050

MPI-IO best
result
Speed in
MB/sec

Tasks per
node (TPN)
3 – 4
Speed in
MB/sec

Tasks per
node (TPN)
1 – 2
Speed in
MB.sec

Number of
datasets



54

HDF5 independent write results

61.06
3 TPN

35 – 6020 – 35200

31.09
4 TPN

20 – 3520 – 35100

32.14
2 TPN

20 – 3520 – 3550

MPI-IO best
result
Speed in
MB/sec

Tasks per
node 3 – 4
Speed in
MB/sec

Tasks per
node 1 – 2
Speed in
MB.sec

Number of
datasets
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Read performance

330 - 2935100 - 650Independent

335 - 180075 - 200Collective

MPI-IO
Speed in MB/sec

PHDF5
Speed in MB/sec

Mode
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Future Parallel HDF5 Features

• Flexible PHDF5
– Reduces the needs of collective calls
– Set aside a process for independent calls coordination
– Estimated release date: end of 2002
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Useful Parallel HDF Links

• Parallel HDF information site
– http://hdf.ncsa.uiuc.edu/Parallel_HDF/

• Parallel HDF mailing list
– hdfparallel@ncsa.uiuc.edu

• Parallel HDF5 tutorial available at
– http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor


